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SUMMARY

The molecular underpinnings of exploration and its
link to learning and memory remain poorly under-
stood. Here we show that inducible, modest overex-
pression of neuronal calcium sensor 1 (Ncs1) se-
lectively in the adult murine dentate gyrus (DG)
promotes a specific form of exploratory behavior.
The mice also display a selective facilitation of long-
term potentiation (LTP) in the medial perforant path
and a selective enhancement in rapid-acquisition
spatial memory, phenotypes that are reversed by
direct application of a cell-permeant peptide (DNIP)
designed to interfere with NCS-1 binding to the
dopamine type-2 receptor (D2R). Moreover, the
DNIP and the D2R-selective antagonist L-741,626
attenuated exploratory behavior, DG LTP, and
spatial memory in control mice. These data demon-
strate a role for NCS-1 and D2R in DG plasticity and
provide insight for understanding how the DG
contributes to the origin of exploration and spatial
memory acquisition.

INTRODUCTION

The remarkable plasticity of the trisynaptic hippocampal network

is suggested to underlie several neural processes including new

acquisition of spatial memory (Goodrich-Hunsaker et al., 2008;

Kandel, 2006; Nakazawa et al., 2004; Scoville and Milner, 1957;

Squire et al., 2004) and novelty exploration (Lever et al., 2006).

While the three best-studied anatomical hippocampal sub-

regions, CA1, CA3, and the dentate gyrus (DG), must act coop-

eratively to produce a functional hippocampus, strong evidence

demonstrates that each subregion performs its own specific,

specialized operations. For example, region CA1 is involved in

the temporal pattern association and temporal pattern comple-

tion aspects of memory formation (Klausberger and Somogyi,
2008), while subregion CA3 supports spatial pattern association

and spatial pattern completion (Kesner, 2007b). The DG, on the

other hand, orthogonalizes sensory information cumulated from

the entorhinal cortex (EC) and, together with area CA3, underlies

spatial pattern separation (Kesner et al., 2004). Detection of

spatial novelty depends on both area CA3 and the DG (Kesner

et al., 2004) and the perirhinal cortex (Kumaran and Maguire,

2007). Because novelty detection is a prerequisite for novelty

exploration, plasticity mechanisms within these regions are

ideally suited to serve a role in the generation of exploratory

behavior, a possibility we explore here. Enhancement of plas-

ticity via genetic manipulation in the forebrain can improve

long-term spatial memory formation (Malleret et al., 2001), but

analogous experiments have not been described for more

anatomically restricted regions within the hippocampus. Here

we report the emergence of specific increases in exploration,

facilitated plasticity, and enhanced rapid acquisition of spatial

memory following inducible, modest overexpression of neuronal

calcium sensor 1 (Ncs1) selectively in the adult DG of a transgenic

mouse line (DGNCS-1 mice).

NCS-1 plays a critical role in several forms of neuromuscular

physiology and short-term neuroplasticity (Burgoyne, 2007; Hil-

fiker, 2003) including axonal development in Lymnaea stagnalis

(Hui et al., 2007), Kv4 current modulation in the mouse myocar-

dium (Guo et al., 2002), P/Q-type calcium channel activity-de-

pendent facilitation in rat Calyx of Held (Tsujimoto et al., 2002),

neurotransmitter release in Xenopus and Drosophila (Pongs

et al., 1993; Wang et al., 2001), and long-term depression (LTD)

in the perirhinal cortex (Jo et al., 2008). In mammals, Ncs1 is

highly expressed in the DG and is dynamically regulated during

in vivo perforant path long-term potentiation (LTP) (Genin et al.,

2001), but whether the increase in Ncs1 mRNA is a result of

LTP or a factor in its induction or maintenance is unknown.

Here we show that DGNCS-1 mice have a lower threshold and

higher ceiling for LTP in the corticohippocampal medial perforant

path (MPP).

This is exciting because LTP is widely considered a molecular

model for learning and memory in mammals, and Ncs1 is already

known to control memory in C. elegans (Gomez et al., 2001), an
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invertebrate system. Though the neural circuits important for

NCS-1-mediated memory in C. elegans were established, molec-

ular mechanisms remain elusive and no role for NCS-1 in learn-

ing and memory in mammals has been reported. An enhance-

ment in rapid acquisition of spatial memory in DGNCS-1 mice

is a compelling demonstration of a role for NCS-1 in learning

and memory in higher organisms, where the nervous system is

more complex (Lein et al., 2007) and physiological correlates

exist (Bliss and Collingridge, 1993).

NCS-1 binds dopamine type-2 receptors (D2R), regulates D2R

phosphorylation through an interaction with G protein-coupled

receptor kinase 2 (GRK2), and controls D2R surface expression

in HEK293 cells (Kabbani et al., 2002). However, there is no

evidence for an in vivo role for NCS-1 in D2R regulation. Here

we show increased surface expression of D2R selectively in

the DG molecular layer of DGNCS-1 mice, where dopaminergic

modulation of synaptic plasticity may be critical to memory

formation (Korz and Frey, 2007; Kovacs et al., 1979; Manahan-

Vaughan and Kulla, 2003). For example, pharmacological antag-

onism of D2R reduces basolateral amygdala-DG LTP (Abe et al.,

2008) and pharmacological activation of D2R improves working

memory (Wilkerson and Levin, 1999) and alleviates scopol-

amine-induced passive-avoidance amnesia (Sigala et al., 1997).

Yet, pharmacological antagonism of D2R can impair Morris

water maze learning if administered immediately posttraining

(Setlow and McGaugh, 2000), and how D2R is regulated during

memory acquisition is unclear. Many of these studies employed

systemic injections that affect the entire CNS, whereas the func-

tion of D2Rs is likely anatomically distinct. In DGNCS-1 mice,

changes to D2R surface expression in the DG MPP may directly

facilitate plasticity and enhance spatial memory because these

effects were blocked by a small cell-permeant D2R/NCS-1 Inter-

fering Peptide (DNIP) designed to compete with NCS-1 binding

to the D2R.

Because human NCS1 expression is associated with psychi-

atric disorders (Koh et al., 2003) and D2R is a major target for

antipsychotic treatment, it is also of clinical interest to investigate

what role the interaction between NCS-1 and D2R plays in the

mammalian nervous system. Here we restrict our focus to the

DG and provide insight for how this specialized brain area

controls exploration and spatial memory.

RESULTS

Generation of Mice with Inducible Ncs1 Overexpression
in the DG
We generated mice with inducible overexpression of rat Ncs1

selectively in DG granule neurons using the rtTA2-M2 system (Mi-

chalon et al., 2005) (Figure 1A). Both the tetO-ncs (GenBank

construct submission FJ756409) and rtTA2 (construct described

in Michalon et al., 2005) lines were created on the identical back-

ground strain in order to exclude potential differences between

genotypes arising from contaminating donor alleles (Armstrong

et al., 2006). By using the rat gene to create the tetO-ncs mice,

silent single nucleotide divergence between mouse and rat

provided a simple reverse-transcriptase-based discernment of

exogenous versus endogenous Ncs-1 mRNA while conserving

the NCS-1 amino acid sequence (Figure 1B). Camk2a-rtTA2
644 Neuron 63, 643–656, September 10, 2009 ª2009 Elsevier Inc.
mice (rtTA2) bred to an rtTA-responsive-teto-LacZ reporter line

showed prominent rtTA2 expression in the dorsal DG cells of

the hippocampal formation (Figure 1C). Rat Ncs1 expression

was doxycyline (dox)-dependent and only occurred in double

transgenic mice (DGNCS-1) positive for both the rtTA2 and

tetO-ncs transgenes (Figure 1D). Quantitative westerns of micro-

dissected brain tissue (Figure S10 available online) showed a 40%

increase in NCS-1 selectively in the DG (Figures 1E and 1F). Simi-

larly, immunofluorescence analysis of confocal z-stacks from the

MPP demonstrated a 40% increase in NCS-1 reactivity (Figures

1G–1I). Immunohistochemistry on frozen sagittal sections also

demonstrated a subtle increase in NCS-1 levels selectively in

the DG (Figure 1J). Because the rat and NCS-1 proteins are iden-

tical, posttranslational modifications and subcellular targeting of

the exogenous protein should track the endogenous protein.

Throughout all experimental analyses, the other two transgenic

genotypes (tetO-ncs and rtTA2) were not statistically different

from wild-type (for example: in NCS-1 DG quantification: p =

0.16, p = 0.26; in rearing in the safe environment: p = 0.16, p =

0.55; in time spent in the target quadrant of the Morris water

maze: p = 0.84, p = 0.47), and the three genotypes were pooled

for comparison against DGNCS-1 mice (Figures S1A and S1B).

Ncs1 Overexpression Enhances Exploration in a Safe
Novel Environment
Prior to any experimentation, subjects were handled for a

minimum of 10 min per day for 10 consecutive mornings. Experi-

ments were conducted on DGNCS-1 and littermate control

subjects on dox for at least 6 days. This excluded any effects

due to minor weight loss (see Figure S1D). Moreover, all experi-

ments were conducted during the same circadian window to

reducephasicvariation (Cainet al., 2008; Valentinuzzi et al., 2008).

The hippocampus is suggested to be important for rearing

behavior under certain conditions (Lever et al., 2006). Thus we

compared rearing behavior in two separate environments using

two separate cohorts of animals. In a dimly lit, nonfearful environ-

ment, DGNCS-1 subjects spent nearly twice as much time rear-

ing compared to their littermate controls (Figure 2A). DGNCS-1

mice also spent less time inactive (still) in this environment

(Figure 2C), suggesting that more time was spent exploring.

We know the increase in rearing and decrease in activity is not

a general effect on locomotion because there were no differ-

ences between the genotypes in any of the standard measures

when we examined a second cohort of animals in an over-

head-lit, fearful environment (Figures 2B and 2D), where rearing

is escape-oriented.

To further explore this tendency for increased exploration, we

designed an experiment similar to the radial arms maze in which

the latency and number of exploratory events for novel environ-

ments in either dim or bright lighting could be easily determined.

We term this experiment the ‘‘New Frontier Exploration Test’’

(see Supplemental Data). In the dimly lit version of this task,

DGNCS-1 mice demonstrated a nearly 2-fold increase in the

number of frontiers visited and a nearly 2-fold decrease in the

latency to explore one or all four new frontiers (Figures 2E and

2G). Yet, no genotypic differences in either measure were

observed when bright overhead lighting was used (Figures 2F

and 2H).
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Figure 1. Generation of DGNCS-1 Mice

(A) Schematic representation of the rtTA2 system and transgenic constructs used to generate the tetO-ncs, rtTA2, and DGNCS-1 lines.

(B) Representative sequencing chromatograms of endogenous mouse Ncs1 mRNA amplicon (upper chromatogram) compared to rat Ncs1 mRNA amplicon from

a DGNCS-1 animal on dox (lower chromatogram). Asterisks indicate silent single nucleotide divergence.

(C) b-gal staining of coronal adult mouse brain sections from rtTA2/LacZ on and off dox.

(D) Selective amplification of rat Ncs1 RNA from hippocampal extracts of DGNCS-1 mice on dox. No expression was observed in littermate controls or in

DGNCS-1 hippocampii off dox.

(E) Hippocampal subregion CA1 and CA3 and DG lysates blotted for NCS-1 and b-tubulin (Tub).

(F) NCS-1 normalized to Tub from various isolated brain regions of DGNCS-1 and littermate control mice on dox (n = 6).

(G) Quantitative z-stack immunofluorescence of NCS-1 in the MPP of DGNCS-1 animals compared to littermate controls.

(H and I) NCS-1 immunofluorescence images from the DG MPP. Representative layer of maximum fluorescent intensity in (H) control and (I) DGNCS-1 slices with

intensity plots shown below (n = 4). Scale bar = 18 mm.

(J) Immunohistochemical staining of NCS-1 demonstrates a subtle increase in staining selectively in the DG of DGNCS-1 slices.

Hip, hippocampus. **p < 0.01. Error bars = SEM.
DGNCS-1 subjects also spent more time exploring the holes

of the hole board test (Figure 2I) and spent longer exploring the

very first hole they encountered, a behavior repeated for each

time they encountered a new hole (Figure 2J). Littermate control

and DGNCS-1 subjects demonstrated similar anxiety as mea-

sured by the light/dark box (Figures 2K and 2L), indicating that

this behavior does not confound the exploration tasks.

Ncs1 Overexpression in the DG Enhances Synaptic
Plasticity
Elevation of DG NCS-1 did not affect basal synaptic transmission

along the MPP (Figures S2A and S2B), the major excitatory

innervation of the hippocampus and the primary source of

sensory information relayed from the EC. Synaptic responses

possessed double exponential decay (not shown) as well as
short-term paired-pulse depression (PPD) (Figure S2C), confirm-

ing electrode placement along the medial and not lateral perfo-

rant path (Bramham and Sarvey, 1996; Hanse and Gustafsson,

1992; McNaughton, 1980). Because the Ncs1 homolog, Freq,

affects calcium-dependent neurotransmitter release in Dro-

sophila and Xenopus (Pongs et al., 1993; Wang et al., 2001),

we measured PPD, a short-term form of presynaptic plasticity

known to be sensitive to calcium, but found no differences

(Figure S2C), corroborating a lack of Ncs1 overexpression in

EC-DG presynaptic terminals. When we stimulated to induce

LTP along the MPP by applying an above-threshold stimulus

(four 100 Hz trains), DGNCS-1 slices demonstrated more robust

plasticity than those of their littermate controls (Figure 3A). Bath

application of the NMDAR antagonist D-APV abolished LTP in

DGNCS-1 mice (Figure 3A).
Neuron 63, 643–656, September 10, 2009 ª2009 Elsevier Inc. 645
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There is a strong frequency dependence for the induction of

LTP in the DG, whereby tetanic stimulation with lower frequen-

cies of the b and g range (10–75 Hz) typically fail to elicit LTP

(Rick and Milgram, 1996). This high threshold for plasticity is

believed to be critical for sparse encoding of the external world

and to underlie learning and memory functions of the dentate

(Barry et al., 2006; Coulter and Carlson, 2007; Marr, 1971;

McNaughton and Morris, 1987). To investigate if not only the

level, but also the threshold of LTP, was altered, we delivered

a below-threshold stimulus using four tetanic trains at half the

previous frequency. Strikingly, DGNCS-1 slices showed strong

LTP even with this weak stimulation, while control slices

showed very modest short-term potentiation and failed to elicit

LTP (Figure 3B). DGNCS-1 slices stimulated with the below-

threshold stimulus attained similar levels of LTP as compared

to control slices given a strong stimulus (compare white bar in

Figure 3A to black bar in Figure 3B). Maximal potentiation was

also greater in DGNCS-1 mice following repetitive weak stimula-

tion (Figure 3C). Thus, by overexpressing Ncs1 in the DG, we

created a mouse with a selective enhancement in EC-DG

NMDAR-dependent plasticity. Importantly, DGNCS-1 slices

and littermate control slices had equivalent LTP in area CA1

(Figure 3D), further demonstrating the regional selectivity of the

plasticity enhancement.

Figure 2. Elevation of NCS-1 in the Adult DG Selec-

tively Promotes Exploratory Behavior in Dimly Lit

Environments

(A) Exploratory rearing in a dimly lit, safe novel environ-

ment was increased in DGNCS-1 mice compared to their

littermate controls. (DGNCS-1, n = 8; Control, n = 16).

(B) Rearing in a brightly lit, fearful environment remained

unchanged between the genotypes, indicating that fear-

motivated rearing was unaffected. Separate cohorts of

mice were used for each of the environment types.

(DGNCS-1, n = 12; Control, n = 11.)

(C and D) Time spent on other behaviors in the (C) safe and

(D) fearful environment. (DGNCS-1, n = 8; Control, n = 16.)

(E–H) New Frontier Exploration Test. Under dimly lit condi-

tions, the DGNCS-1 group had (E) a lower latency to reach

any or all frontiers and (G) more total frontier visit events.

(F and H) Under bright lights, no genotypic difference

was observed. (DGNCS-1, n = 8; Control, n = 11.)

(I and J) Hole board test. (I) DGNCS-1 mice spent more

total time exploring holes. (J) DGNCS-1 mice spent more

time exploring a hole during primary encounter of the first

and all subsequent holes. (DGNCS-1, n = 9; Control, n = 10.)

(K and L) Light/Dark Box. DGNCS-1 and littermate control

subjects (K) spent equivalent time in each chamber of the

light/dark box and (L) demonstrated equivalent latencies

to move into the brightly lit chamber. (DGNCS-1, n = 9;

Control, n = 10.)

*p < 0.05, **p < 0.01. Error bars = SEM.

Ncs1 Overexpression Leads to Faster
and Longer-Lasting Displaced Object
Recognition Learning and Memory
Due to the role of the DG in conjunctive encod-

ing (O’Reilly and McClelland, 1994) and pattern

separation (Bakker et al., 2008; Kesner, 2007a;

Leutgeb et al., 2007; McHugh et al., 2007), it is possible that

modulating NMDAR-dependent plasticity at this synapse will

alter representations of the external environment. If such an

alteration led to a distortion of environmental cues, it should be

discernable in space-dependent, cognitive tasks. Thus, we

examined the performance of the DGNCS-1 mice in two spatial

learning and memory paradigms.

We first chose the object recognition task because it provides

an elegant method to investigate both spatial and nonspatial

one-trial, nonaversive memory. Moreover, object recognition is

an ethological paradigm that captures latent learning in the

absence of explicit rewards. During training, DGNCS-1 and litter-

mate control subjects spent equivalent time investigating the

objects and no differences between genotypes were observed

in ambulation, anxiety, grooming, or risk-assessing behaviors

(Figure S3). Yet, as previously observed, DGNCS-1 subjects

spent more time rearing (Figure S3). In a standard short-term

memory paradigm (15 min habituation/training; see Figure S4),

both DGNCS-1 and littermate control mice demonstrated a

strong preference for the displaced and novel objects, suggest-

ing the change in DG NMDAR-dependent plasticity did not

disrupt spatial learning, at least not in this task (Figure 4A).

This raised the exciting possibility that facilitated DG synaptic

plasticity could lead to superior neural encoding of space and
646 Neuron 63, 643–656, September 10, 2009 ª2009 Elsevier Inc.
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Figure 3. Modest Elevation of NCS-1 Enhances Long-Term Synaptic Plasticity

(A) Modest overexpression of Ncs1 in the DG enhanced MPP LTP following above-threshold tetanic stimulation (4 3 100 Hz) and was blocked by the NMDAR

antagonist D-APV. (DGNCS-1, n = 11 slices from n = 8 mice; Control, n = 20 slices from n = 11 mice; DGNCS-1 + D-APV, n = 2 slices from n = 2 mice.)

(B) Only slices from DGNCS-1 mice produced robust LTP following below-threshold tetanic stimulation (4 3 50 Hz). (DGNCS-1, n = 10 slices from n = 9 mice;

Control, n = 6 slices from n = 5 mice.)

(C) DGNCS-1 slices show higher maximum potentiation following eight sets of weak tetanic stimulation (2 3 50 Hz each), as compared to controls. (DGNCS-1,

n = 9 slices from n = 4 mice; Control, n = 3 slices from n = 1 mouse.)

(D) No genotypic difference was observed in LTP along the Schaffer Collateral CA1 synapse. (DGNCS-1, n = 6 slices from n = 3 mice; Control, n = 5 slices from

n = 4 mice.)

Inset sample traces (scale bar of 0.5 mV and 10 ms) show superimposition of baseline and the periods used to generate bar graphs. Bar graph shows LTP at

60 min and max potentiation for the 5 min period following the final stimulus. *p < 0.05, **p < 0.01. Error bars = SEM.
enhance learning. Therefore, we shortened the time given for

subjects to become familiar with objects and object locations

and again tested short-term memory. Remarkably, only the

DGNCS-1 group showed an ability to discriminate between dis-

placed and stationary objects in this harder version of the task

(Figure 4B).

It is well established that the DG is involved in short-term

memory (Kesner, 2007a), while the involvement of the DG in long-

term memory has been less explored. We therefore trained the

subjects in a third paradigm for which control animals demon-

strate short-term memory (Figure S5), but not long-term memory.

Remarkably, DGNCS-1 animals were still able to discriminate

between displaced and stationary objects even after a 24 hr

interval (Figure 4C). Therefore, DG plasticity may promote the

rapid acquisition of both short- and long-term spatial memory.

Ncs1 Overexpression Enhances Morris Water Maze
Learning
To investigate if the spatial memory enhancements in the

DGNCS-1 mice would translate to another hippocampus-

dependent task, we turned to the Morris water maze. In a strin-

gent paradigm using ample distal spatial cues and a large plat-

form in a small pool, subjects were trained with a single trial

and then tested for retention of the platform location in a probe

(no platform) trial 24 hr later. This procedure was repeated three

times using three different platform locations, and the perfor-

mance of each subject was averaged over all three sessions

(see Figure S4 for experimental design). Not surprisingly, control

animals failed to demonstrate a preference for the target quad-
rant during the probe trial (Figure 4D). DGNCS-1 animals,

however, spent nearly 50% more time searching in the target

quadrant than they did in any of the other three quadrants, sug-

gesting they learned and recalled the platform location. Though

DGNCS-1 animals did not have a faster latency to the counter

location (set as twice the platform area) (Figure 4E), they did

pass though it more frequently (Figure 4F) and spent more time

searching that area of the maze (Figure 4G).

We also assessed learning and memory in the Morris water

maze by training the same subjects with four trials on a single

day using a 45 min intertrial interval. In this task, control and

DGNCS-1 subjects had similar latencies to the platform by

the fourth trial (Figure 4H); however, only DGNCS-1 subjects

showed a statistically significant decrease in latency to reach

the platform on trial 2 compared to trial 1. When tested in a probe

trial 24 hr later, no differences were observed between the geno-

types in any of the standard measures of memory performance

(Figures 4I–4K). Thus, if control subjects receive sufficient

training, they can perform at the level of DGNCS-1 mice.

NCS-1 Controls D2R Surface Expression in Hippocampal
Neurons
NCS-1 and D2R associate in vitro and colocalize in monkey and

rat striatum (Kabbani et al., 2002), but whether NCS-1 and D2R

interact in mouse hippocampus is unknown. Colabeled mouse

brain sections for surface D2R under nonpermeabilizing condi-

tions and for NCS-1 after permeabilization showed overlap

(Figures 5A–5F). NCS-1 and D2R also coimmunoprecipitated

from mouse hippocampal lysates (Figure 5G).
Neuron 63, 643–656, September 10, 2009 ª2009 Elsevier Inc. 647
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Figure 4. Elevation of DG NCS-1 Enhances

Rapid Acquisition of Spatial Memory

(A) In a standard version of the object recognition

task, both DGNCS-1 and littermate control ani-

mals demonstrated a preference for the displaced

and novel objects when tested following 2 min

intervals (DGNCS-1, n = 8; Control, n = 16).

(B) In a minimal habituation/training version of

the task, only the DGNCS-1 subjects showed dis-

crimination between the displaced and stationary

objects (DGNCS-1, n = 7; Control, n = 9).

(C) Only DGNCS-1 subjects discriminated be-

tween displaced and stationary objects when

assessed 24 hr after an intermediate level of habit-

uation/training (DGNCS-1, n = 9; Control, n = 15).

(D–G) Average of three probe trials, each 24 hr

after a single-trial Morris water maze experiment.

DGNCS-1 mice (D) spent more time in the target

quadrant, (E) had a similar latency to the counter,

(F) passed more often through the counter, and

(G) spent more time in the counter location.

(H) Latency to reach the hidden platform for

DGNCS-1 and littermate control animals for four

trials, 45 min apart. Maximal performance was

achieved on trial 2 for the DGNCS-1 groups and

on trial 4 for the control group.

(I–K) Probe trial 24 hr after (H). No differences

between the groups were found in (I) latency to,

(J) passes through, or (K) time spent in the counter

location. (DGNCS-1, n = 17; Control, n = 33.) See

Figure S4 for detailed schematic of experimental

protocols and apparatus. S, stationary object; D,

displaced object; F, familiar object; N, novel

object; HAB, habituation phase; DO, displaced

object phase; NO, novel object phase. n.s. = not

significant between trial, ***p < 0.001 between

trial, yyyp < 0.001 within genotype, *p < 0.05

between genotype, **p < 0.01 between genotype.

Error bars = SEM.
To investigate the function of NCS-1/D2R interaction, we de-

signed the DNIP, a cell-permeant NCS-1/D2R interfering peptide

(Figure 5H), by coupling the HIV-1 TAT protein transduction

domain sequence to the minimal region of D2R that binds

NCS-1 (Kabbani et al., 2002). Application of the DNIP decreased

surface levels of D2R in acute dissociated rat hippocampal

cultures (Figure 5I) and in the perforant path of mouse hippo-

campal slices (Figures S6A–S6C), suggesting endogenous

NCS-1 may serve to facilitate D2R surface expression. Indeed,

D2R desensitization in HEK293 cells is attenuated by NCS-1

(Kabbani et al., 2002). While whole surface expression of D2Rs

in the DG and areas CA1 and CA3 of DGNCS-1 brains was

comparable to that of littermate control animals (Figures 5Q

and 5R), immunofluorescence analysis of D2R surface expres-

sion showed an enhancement in surface D2R restricted to the

molecular layer of the DG, suggesting that the receptors are

properly targeted (Figures 5K–5P).

The DNIP also prevented quinpirole from attenuating the

forskolin-induced cellular cyclic adenosine monophosphate

(cAMP) response (Figure 5J), proving that the active peptide

can functionally inhibit D2R. Importantly, the DNIP did not affect

surface expression of D1R (Figures S6D–S6F and S7A) or D3R

(Figures S6G–S6I). The DNIP also failed to block the D1R-medi-
648 Neuron 63, 643–656, September 10, 2009 ª2009 Elsevier Inc.
ated cAMP response and did not prevent pharmacological antag-

onism of these receptors (Figure S7B), demonstrating that it is not

a nonspecific, global regulator of receptor surface expression.

D2R and G Protein Signaling Mechanisms May Underlie
the Enhanced LTP in DGNCS-1 Slices
We investigated if the LTP enhancement in the Ncs1-overex-

pressing mice required the interaction of NCS-1 and D2Rs by

recording LTP in the presence of the DNIP. The DNIP and srDNIP

did not affect basal transmission (Table S1 available online),

short-term plasticity (Table S1), or LTP in littermate controls

following the below-threshold stimulus (Figure 6A). In DGNCS-1

slices, however, the DNIP blocked LTP following the below-

threshold stimulus (Figure 6B), suggesting the interaction of

NCS-1 and the D2R is critical for facilitation of LTP in DGNCS-1

slices, and may also underlie the promotion of specific forms of

exploration and enhancements in spatial memory acquisition.

The DNIP also attenuated above-threshold LTP in control slices

(Figure 2C), demonstrating an endogenous role for the NCS-1/

D2R interaction in long-term synaptic plasticity.

To further investigate if D2Rs and downstream signaling

pathways of D2Rs underlie enhanced LTP in DGNCS-1 slices,

we applied L-741,626 at a concentration selective for D2Rs
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Figure 5. NCS-1 Controls D2R Surface Expression in Mouse Hippocampal Neurons

(A) Confocal image of surface D2R immunostaining in the mouse DG.

(B) Corresponding image of NCS-1 immunostaining from the same section shown in (A).

(C) Overlay of (A) and (B), with codistributed regions appearing in yellow. Scale bar = 240 mm.

(D–F) Higher-power confocal stacks within MPP of DG molecular layer, shown as isometric projection, for each of D2R, NCS-1, and overlay, respectively. Scale

bar = 18 mm.

(G) Coimmunoprecipitation of NCS-1 and D2R from mouse hippocampal lysates. p.l., pre-cleared lysate; c.l., crude lysate.

(H) DNIP (upper sequence) and srDNIP (lower sequence) fused to TAT.

(I) Colorimetric measurements of D2R surface expression in hippocampal cultures isolated from E17–E19 fetal Wistar rats. Cultures were incubated in either 2 mM

DNIP or srDNIP for 30 min (n = 3).

(J) cAMP quantification in hippocampal cultures following 30 min incubation of DNIP or srDNIP with indicated compounds (n = 3).

(K and L) Representative surface D2R staining in the dentate of (A) control and (B) DGNCS-1 subjects. Scale bar = 45 mm.

(M–P) Quantification of confocal z-stack immunofluorescence from DGNCS-1 and control genotypes in (M) DG granule cell layer, (N) DG molecular layer, (O) hilus,

and (P) CA1 Schaffer Collateral (SchC) molecular layer (n = 4).

(Q and R) Biotinylated surface protein immunoblots of GluR2, D2R, and N-Cadherin as the loading control.

Forsk, forskolin; Quin, quinpirole. *p < 0.05. Error bars = SEM.
(50 nM). Here we found that the D2R antagonist attenuated and

normalized the extent of LTP (Figure 6D), suggesting that D2R is

important for DG LTP in wild-type slices and is also critical for the

plasticity enhancement in DGNCS-1 slices. The Gbg blocker gal-

lein also attenuated LTP in littermate controls and normalized

LTP in DGNCS-1 animals (Figure 6E).

Because mGluR5-mediated LTD in adjacent brain areas

involves NCS-1 (Jo et al., 2008), we also applied the mGluR5
antagonist MPEP to DGNCS-1 and littermate control slices.

Yet we still observed a statistical genotypic difference (Figure 6F),

indicating that the mGluR5 receptor subtype is not involved in

this particular form of NCS-1-dependent plasticity. Similarly,

inhibitory modulation is not a potential contributor to the

enhanced plasticity in DGNCS-1 slices because LTP was pre-

vented by removal of the GABAA blocker bicuculline from

the perfusion aCSF (Figure S8). Moreover, the contribution of
Neuron 63, 643–656, September 10, 2009 ª2009 Elsevier Inc. 649
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Figure 6. Antagonism of D2R and Gbg Signaling Normalizes LTP in DGNCS-1 Slices

(A) Neither DNIP nor srDNIP (10 mM each) had an effect on plasticity following a weak tetanic stimulus (4 3 50 Hz) in control slices. (DNIP: n = 4 slices from n = 3

mice; srDNIP: n = 3 slices from n = 3 mice.)

(B) LTP (4 3 50 Hz) in DGNCS-1 slices was attenuated by application of DNIP. (srDNIP: n = 3 slices from n = 3 mice; DNIP: n = 4 slices from n = 4 mice.)

(C) LTP in control slices induced by the above-threshold stimulus (4 3 100 Hz) was attenuated with DNIP. (srDNIP: n = 4 slices from n = 4 mice; DNIP: n = 7 slices

from n = 4 mice.)

(D) LTP (4 3 100 Hz) in DGNCS-1 slices was normalized to the level of controls with application of 50 nM of the D2R-selective antagonist L-741,626. (Control: n =

11 slices from n = 6 mice; DGNCS-1: n = 6 slices from n = 4 mice.)

(E) LTP (4 3 100 Hz) in DGNCS-1 slices was normalized to the level of controls with application of 10 mM of the Gbg inhibitor gallein. (Control: n = 6 slices from n = 3

mice; DGNCS-1: n = 6 slices from n = 4 mice.)

(F) In the presence of 1 mM of the mGluR5 antagonist MPEP, LTP (4 3 100 Hz) in DGNCS-1 slices was still greater than LTP in littermate control slices. (Control: n =

7 slices from n = 4 mice; DGNCS-1: n = 6 slices from n = 3 mice.)

*p < 0.05, ***p < 0.001. Error bars = SEM.
NMDAR and AMPAR to baseline field responses was compa-

rable in DGNCS-1 and littermate control slices (Figure S9), and

surface expression of GluR2 was comparable between the

groups in areas CA1 and CA3 and the DG (Figures 5Q and 5R).

The finding that baseline NMDAR transmission is not affected

in DGNCS-1 slices demonstrates that although NMDAR-depen-

dent mechanisms are required to initiate LTP in DGNCS-1 slices,

baseline NMDAR levels do not mediate the plasticity enhance-

ment.

NCS-1 and D2R Underlie Rearing Behavior and Spatial
Memory
We explored if the interaction of NCS-1 and the D2R was impor-

tant for rearing behavior in DGNCS-1 and littermate subjects by

direct infusion of the DNIP to the DG. Representative cannulae

tracks and dorsal view of infusion sites are shown in Figure 7B.

The DNIP and srDNIP conjugated to fluorescent probes directly

infused into the dentate showed a degree of diffusion sufficient

to cover approximately one-third of the DG and less than 5% of

area CA1 (Figure 7G). High-power 3D confocal z-stack imaging

of individual granule neurons demonstrated that the peptides

penetrate into cells (Figure 7H). DGNCS-1 and control subjects

infused 3–5 hr prior to examination demonstrated equivalent rear-

ing behavior in a safe environment (Figure 7A). There were no

differences in any of the other standard measures (not shown).

Because the DNIP normalized rearing behavior in this type of

environment, NCS-1 interaction with the D2R is likely important

for the promotion of exploratory rearing in DGNCS-1 subjects.
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Infusion of the DNIP also blocked both the short- and long-

term spatial memory enhancements (Figures 7C and 7D), but

the same dose did not affect the performance of littermate

control animals in the standard version of the task (Figure 7E).

To investigate if endogenous levels of NCS-1 and D2R cooperate

to mediate the rapid acquisition of spatial memory, we infused

a higher (5x) dose of the peptide into the DG of control mice

and again examined displaced object learning and memory.

Here, the DNIP prevented spatial memory formation (Figure 7E),

indicating that the NCS-1/D2R interaction is required in this task.

Blockade of D2Rs by bilateral infusion of L-741,626 into the DG

also prevented displaced object discrimination in littermate

control animals on dox (Figure 7F), demonstrating the impor-

tance of D2R in spatial memory acquisition. Importantly, novel

object recognition (which involves other brain areas) was unaf-

fected by either the DNIP or L-741,626, suggesting that the rela-

tionship between NCS-1 and the D2R in the DG is not critical for

enhancing single-modality learning and memory (see Figure 8A).

DISCUSSION

To understand the molecular underpinnings of exploration and its

link to learning and memory, we must understand the molecular

underpinnings of plasticity in relevant brain regions. Here

we identify the importance of the DG in a specific form of explo-

ration. We also demonstrate a potential link between DG

NMDAR-dependent LTP and exploratory rearing behavior in

a mouse line that demonstrates enhanced rapid acquisition of
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Figure 7. D2R is Important for Exploratory Rearing and Spatial Memory in DGNCS-1 and Control Subjects

(A) Preinfusion of a low dose of DNIP directly into the DG of cannulized subjects attenuated curiosity-driven rearing behavior compared to sham-treated or

srDNIP-infused DGNCS-1 subjects. Only a high dose (5x) of DNIP reduced rearing behavior in control subjects. L-741,626 reduced rearing behavior in control

animals. (DGNCS-1 + srDNIP/sham: n = 9; DGNCS-1 + DNIP: n = 7; Control + DNIPlow dose: n = 7; Control + DNIPhigh dose: n = 2; Control sham: n = 5; Control +

L-741,626: n = 4.)

(B) Representative coronal section and dorsal view of a cannulized brain after removal of cannulae, showing infusion tracks and surgical placement.

(C and D) The DNIP blocked both the (C) minimal short-term and (D) long-term spatial memory (displaced object discrimination) enhancement in DGNCS-1.

Nonspatial memory (novel object discrimination) remained intact (n = 7). srDNIP-infused (n = 3) or sham-treated DGNCS-1 subjects (n = 6) demonstrated rearing

similar to untreated DGNCS-1 subjects.

(E) The same dose of peptide had no effect on littermate controls in the standard version of the short-term memory task (n = 7). A higher (5x) dose of DNIP abol-

ished spatial learning in control mice while preserving novel object recognition (n = 2).

(F) L-741,626 selectively abolished displaced object discrimination when infused bilaterally in the DG of control subjects (n = 4). Sham-treated controls still

demonstrated discrimination (n = 5).

(G) Fluorescently conjugated srDNIP (blue) and DNIP (red) infused into the dentate 3 hr prior to sacrifice for processing and imaging. Picogreen was applied to

label nuclei. Overlay is shown in lower right panel. Scale bar = 500 mm.

(H) High-power 3D z-stack confocal images displayed at various rotations of the srDNIP in neurons of the DG. Scale bar = 35 mm.

S, stationary object; D, displaced object; F, familiar object; N, novel object. *p < 0.05, **p < 0.01, ***p < 0.001. Error bars = SEM.
spatial memory. We identify the calcium sensor NCS-1 as a regu-

lator of D2R surface expression in the DG molecular layer and

employ two forms of D2R antagonism (the DNIP and L-741,626)

that suggest that D2Rs underlie the promotion of exploratory

behavior, LTP, and memory in the DGNCS-1 mouse line.

Selection of Model
NCS-1 was a promising protein to study because of its expres-

sional regulation during in vivo LTP (Genin et al., 2001) and

involvement in learning and memory in C. elegans (Gomez

et al., 2001). We selected an inducible transgenic system to

genetically perturtb Ncs1 expression in adult mice because

NCS-1 is critical in the development of the nervous system and

muscle (Coukell et al., 2004; Hui et al., 2007). Constitutive over-

expression, or null or conditional mutations, may have caused

developmental abnormalities, obscuring interpretation of the

data. It was also our aim to isolate and study a subregion of
the hippocampus in order to better understand its function. As

such, we unveil the importance of the DG in exploratory behavior

and rapid memory acquisition.

The Role of the DG in Rapid Acquisition of New Spatial
Memory
Sparse encoding is a central feature for pattern separation

processes in the DG (Bakker et al., 2008; Kesner, 2007a; Leut-

geb et al., 2007; McHugh et al., 2007) and is believed to be crit-

ical for accurate spatial mapping during learning and memory

(Coulter and Carlson, 2007; Marr, 1971). Sparse encoding is

only possible because DG granule neurons form synaptic

contacts with a relatively modest number of CA3 pyramidal

neurons. Thus, it is important that the number of DG neurons

stimulated during encoding of the environment does not change

such that inputs into CA3 become nonspecific or inadequately

orthogonalized, a situation that could result in catastrophic
Neuron 63, 643–656, September 10, 2009 ª2009 Elsevier Inc. 651
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Figure 8. Models for DG Regulation of Curiosity and Multimodal Memory Formation and NCS-1/D2R Regulation of Synaptic Plasticity

(A) Multimodal information from the sensorium is integrated in the EC and projected (blue arrows) to the DG where pattern separation occurs. Here NCS-1 (red

arrow) lowers the LTP induction threshold, as depicted by the variable resistor (jagged blue arrows), and enhances EC-DG LTP to promote rapid acquisition of

space-dependent memory. Single-modality information processing (green arrows) may occur via direct projections from the EC to areas CA1 or CA3. Circuitry

responsible for exploratory or curiosity-driven behavior (purple arrows) arises in the DG and projects through the EC and/or hippocampal trisynaptic loop to the

nucleus accumbens. Bidirectional signaling between the nucleus accumbens and ventral tegmental area results in rearing behavior. More rearing, in turn, contrib-

utes to a richer sensorium, potentially completing a positive-feedback loop. Circuitry responsible for fear-driven rearing (orange arrows) arises in the amygdala,

a system not affected in our model. IF, information; DG, dentate gyrus; CA, cornu ammonis; EC, entorhinal cortex; Sub, subiculum; NA, nucleus accumbens; A,

amygdale; VTA, ventral tegmental area. Arrow thickness approximates relative strength of synaptic contact. Arrow number approximates relative amount of

innervating projections.

(B) NCS-1 drives D2R surface expression, a process blocked by DNIP. Activation of D2R (blocked by L-741,626) stimulates Gbg downstream signaling mech-

anisms (blocked by gallein) that contribute to plasticity, exploration, and memory.
interference (Hetherington, 1990). A lack of memory deficits in

the DGNCS-1 animals suggests sparse encoding in the DG

can be preserved when the threshold for plasticity is reduced

and the ceiling of plasticity is increased.

The Role of the DG in Spatial Novelty versus Object
Novelty
DGNCS-1 mice display enhanced displaced object recognition,

but normal novel object recognition. This might suggest NCS-1

and D2Rs function specifically in the DG to mediate multimodal

information storage (Figure 8A). One major difference between

novel object discrimination and displaced object discrimination

is the number of sensory cues required to differentiate old from

new (i.e., produce a mismatch). To recognize a novel spatial

change, the many distal cues of the surrounding environment

must be used, requiring integration of multiple sources of

sensory information (multimodal input). On the other hand, to

recognize a new object, any single cue (shade, shape, texture,

etc.) can be employed to generate a mismatch and signal

novelty. Since DG LTP is enhanced in these animals, and could

underlie the enhancements in memory (though we do not

attempt to prove this directly), it may be reasonable to also

predict DG LTP does not underlie novel object recognition.

Instead, other regions of the hippocampus are likely more impor-

tant. Direct perforant path projections from the EC to areas CA3

or CA1 of the hippocampus may sufficiently encode single-

modality, nonspatial information without undergoing conjunctive

encoding or pattern separation processes via the DG (see model

in Figure 8A).

The Role of the DG in Exploration and the Link to Memory
An isolated enhancement in exploratory rearing by selective

alteration of the DG is exciting because while the medial hypo-
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thalamus, amygdala, and nucleus accumbens are all known to

be critical for defensive rearing behavior (Lever et al., 2006;

Sandner et al., 1987; Silveira and Graeff, 1992), anatomical

regions specifically responsible for rearing in safe conditions

have proved more difficult to identify (Lever et al., 2006).

Since novelty detection is required for novelty exploration and

the DG is important for novelty detection (Kesner et al., 2004), it is

ideally suited to play a role in generating novelty exploration.

Indeed, the DG sends projections to the nucleus accumbens,

a region responsible for initiating rearing (Lever et al., 2006), via

two major paths. The first is through the trisynaptic hippocampal

loop and the other is through the EC and subiculum. Either, or

both, of these pathways could be critical to initiating exploration.

We observe promotion of a specific form of exploratory behavior

in a mouse line with selective manipulation to the DG, but other

subregions of the hippocampus may also be important, par-

ticularly if signaling from the DG to the nucleus accumbens

is relayed—and therefore potentially modified—through the

remainder of the hippocampal circuit.

Though facilitated DG NMDAR-dependent plasticity in

DGNCS-1 animals may underlie the enhanced learning and

memory in this mouse line, it is worth entertaining the hypothesis

that increased curiosity may also contribute. Rearing in novel

environments allows animals to make use of a superior vantage

point, including longer sight and alternative air currents (Barry

et al., 2006; Hetherington, 1990; Lever et al., 2006). A mutant

model of fragile X syndrome demonstrates reduced rearing

(Mineur et al., 2002), and dopamine dysfunction has recently

been implicated to underlie fragile X syndrome (Weinshenker

and Warren, 2008). DGNCS-1 subjects behave as if they incor-

porate a richer sensorium, which could be due to increased rear-

ing, facilitated plasticity, or both. Though we do not test this

directly, we agree with the prediction that a richer sensorium
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can ultimately translate into a more detailed environmental map

(Barry et al., 2006), which in turn could enhance spatial memory

acquisition and the potential for novelty detection. In Figure 8A,

we provide a model for how NCS-1 and ‘‘curiosity’’ originating in

the DG might help establish spatial maps and memory.

Several studies have found stereotypy and increased locomo-

tion in rodent models of schizophrenia, such as following MK801

administration (Tiedtke et al., 1990). However, hyperactivity is

more frequently found for horizontal locomotion (Clapcote

et al., 2007; Kellendonk et al., 2006). Moreover, because hyper-

activity persists in brightly lit environments typical for locomotion

experimentation, increased rearing in the DGNCS-1 animals

does not likely signify a psychiatric endophenotype. We feel

this result supports the selectivity of induced Ncs1 expression

since NCS-1 and D2Rs are both implicated in schizophrenia as

well as other psychiatric disorders.

Clinical Considerations
It is important to identify promising molecular targets that could

be used to enhance cognition in human diseases. We feel NCS-1

and the D2R are such targets. Moreover, while in this study we

focused on the DG, these findings have broad implications for

other diseases of the nervous system since NCS-1 and the

D2R are coexpressed in many cell types and are implicated in

mental illnesses, including schizophrenia, bipolar disorder, and

addiction (Berke and Hyman, 2000; Joyce et al., 1993; Kabbani

and Levenson, 2006; Koh et al., 2003; Saab and Roder, 2007;

Souza et al., 2006).

There is good reason to predict that the DNIP would most

readily reduce D2R surface expression in areas of the brain that

show high levels of D2R expression, such as the striatum.

Because the striatum is implicated in neuroendophenotypes of

psychiatric disorders, including schizophrenia (Kellendonk et al.,

2006) and addiction (Gerdeman et al., 2003), it would be inter-

esting to test the effects of the DNIP in relevant rodent models.

In summary, we show that NCS-1 and D2R combine to regu-

late exploratory behavior, NMDAR-dependent perforant path

plasticity, and rapid acquisition of short- and long-term spatial

memory. These results offer insights into behavioral, cellular,

and molecular mechanisms governing the origin of exploration

and the formation of memory, and underscore the importance

of their relationship.

EXPERIMENTAL PROCEDURES

For full experimental procedures, see the accompanying Supplemental Data.

Generation of Camk2a-rtTA2 and tetO-ncs Transgenic Mice

The DG-restricted rtTA2-M2 line (designated ‘‘Tg(Camk2a-rtTA2-901)SMan’’

on the Mouse Genome Informatics database [MGI], http://www.informatics.

jax.org/) was created by random integration of the Camk2a-rtTA2 transgene

as previously described (Michalon et al., 2005). The tetO-ncs transgenic line

was created in pure inbred C57BL/6 oocytes at the Princess Margaret Hospital

Transgenic facility, Toronto (designated ‘‘Tg(tetO-Ncs1)JRod’’on the MGI

database).

Dox Administration

Mice were fed fresh dox food daily at time of lights out (7:00 p.m.). Three to five

hours prior, food was prepared from powdered Purina Mouse Chow, water,
and dox (Doxycin/Doxycycline Hyclate, obtained from the Mount Sinai

Hospital pharmacy in Toronto).

Vibratome Sections and LacZ

LacZ staining was carried out as previously described (Michalon et al., 2005).

RNA Isolation, cDNA Synthesis, and PCR

RNA was extracted with Trizol Reagent (Invitrogen) as described by the manu-

facturer. cDNA was synthesized with MonsterScript 1st – Strand cDNA

Synthesis Kit (Epicenter Biotechnologies; MS041050) and random nonomers

according to the manufacturers’ instructions.

Protein Isolation, Westerns, and Quantification

DG subregions were punched out from hippocampal slices (Figure S10). The

remainder of each slice was taken as the CA1 and CA3 enriched fraction.

The ends of the hippocampus excluding the slices were used as the hippo-

campal fraction.

Immunohistochemistry

Frozen 10 mM sections were fixed for 10 min in 4% PFA, stained overnight in

primary antibody, and reacted with the appropriate peroxidase secondary.

In all figures, black = less staining.

Electrophysiology

Experiments were conducted essentially as previously described (Henderson

et al., 2001).

Behavior

All experiments were approved by the local committee on animal care and

conformed to the national guidelines (CCAC; http://www.ccac.ca). Experi-

ments were performed on DGNCS-1 and littermate control animals on dox.

Experimenters were blind to the genotypes of the subjects.

Safe and Fearful Novel Environment Behavioral Examination

An identical Plexiglas arena (inner dimensions: 42 cm3) and objects were used

for the safe (�50 lux) and fearful (�400 lux) environments. See Figure S4 for

a schematic diagram of the test.

New Frontier Exploration Task

Mice were allowed to climb from their home cage onto any of four platforms,

each elevated 15 cm above the floor and connected to novel environments,

dubbed ‘‘frontiers’’ (18 cm 3 30 cm). See Figure S4 for a schematic diagram

of the test.

Hole Board Test

Behavioral observations were made for 5 min in a dimly lit circular environment

(r = 25 cm, 40 cm high) containing four circular holes (r = 1 cm) elevated 8 mm

above a clean surface.

Light/Dark Box

Mice were placed in a closed black Plexiglas chamber (20 cm3) for 2 min, after

which a trap door was raised 4 cm to allow entry into a brightly lit transparent

Plexiglas chamber (20 cm3). The location of the animal was then recorded for

a further 2 min.

Object Recognition

Experiments were conducted in a square Plexiglas environment as depicted in

Figure S4, using objects upon which the mice were unable to climb. All proto-

cols followed the same sequence of five sections: (1) habituation, (2) interval,

(3) displaced object discrimination, (4) interval, and (5) novel object discrimina-

tion.

Morris Water Maze

A schematic of apparatus and procedure is shown in Figure S4. Acquisition

and probe trials were a maximum of 180 s and 60 s, respectively. The minimal

procedure was repeated three times and results are presented as the average

performance from all three sessions.
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Immunofluorescence in DGNCS-1 Slices

Three-hundred-micrometer slices were immersed in 4% PFA in PBS for 5 min

to provide light fixation without disrupting plasma membranes. Further pro-

cessing was carried out at 4�C in PBS plus 2% BSA.

Immunofluorescence in DNIP-Treated Slices

Slices were incubated for 1 hr in an oxygenated aCSF bath containing 10 mM of

either the active or scrambled DNIP prior to brief fixation and immunostaining.

Coimmunoprecipitation

Using protein A Sepharose CL-4B, coimmunorecipitation was continued ac-

cording to the manufacturers’ instructions.

Peptide Synthesis

Peptides were prepared by Dr. Wang at the Advanced Protein Technology

Centre at the Hospital for Sick Children, Toronto. The nine amino acids of

the active DNIP sequence (Kabbani et al., 2002) were pseudorandomized to

generate the scrambled DNIP. Blasts confirmed no strong homology to the

mouse proteome.

Primary Cultures of Hippocampal Neurons

Cultures were prepared from hippocampii dissected from E17–E19 fetal Wistar

rats and incubated at 37�C in a 5% CO2 incubator in Neurobasal/B27 medium

for 10–14 days before use.

Cell-ELISA Assays

Cell-ELISA assays (colorimetric assays) were performed essentially as previ-

ously described (Lee et al., 2002; Man et al., 2000). Cell surface expression

is presented as the ratio of colorimetric readings under nonpermeabilized

conditions to those under permeabilized conditions.

cAMP Assays

After 30 min treatment of neurons with 10 mM forskolin, 10 mM quinpirole, 1 mM

SCH23390, or a combination as appropriate, cAMP assays were performed as

directed by the manufacturer (R&D systems).

Cannulization and Infusions

Stainless steel guide cannulae were positioned at coordinates �2.0 mm from

bregma, ±1.5 mm from midline, and �1.2 mm from the dura. DNIP peptide

(low dose, 25 ng/ml) was infused 3–5 hr before behavioral analysis 0.5 mm

below the termination of the guide cannulae at 0.1 ml/min for 5 min.

Statistical Analysis

We used two-way ANOVA Tukey HSD for comparisons of equal n or unequal n

where required.

SUPPLEMENTAL DATA

Supplemental data for this article include Supplemental Experimental Proce-

dures, ten figures, and one table and can be found at http://www.cell.com/

neuron/supplemental/S0896-6273(09)00626-6.
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